If it's not what You are looking for type in the equation solver your own equation and let us solve it.
r^2=31
We move all terms to the left:
r^2-(31)=0
a = 1; b = 0; c = -31;
Δ = b2-4ac
Δ = 02-4·1·(-31)
Δ = 124
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{124}=\sqrt{4*31}=\sqrt{4}*\sqrt{31}=2\sqrt{31}$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{31}}{2*1}=\frac{0-2\sqrt{31}}{2} =-\frac{2\sqrt{31}}{2} =-\sqrt{31} $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{31}}{2*1}=\frac{0+2\sqrt{31}}{2} =\frac{2\sqrt{31}}{2} =\sqrt{31} $
| 4x=33/7 | | Y=-⅔x+4 | | a3−11a3−9a+99=0 | | 1/20=x/30 | | 13×20–15×9+20×7–6×15=a | | .370/50=x/0 | | 5=(2+3x)180=(4x-18) | | 36÷48=6÷x | | x/3/4=2/15 | | .9/40=x/0 | | 16/68=200/m | | 7(a-1)=13 | | 5c+160=640 | | 3x+3=2x-8=180 | | -9p+24=-3 | | 4=5t^2 | | (3x+3)=(2x-8) | | 6t+13=19t | | s+42=3s+8 | | 2k+3k-4-2=14 | | 8(2x-10)=4(-20+4x) | | -10x+6-2x=-12x-14 | | x-65=-15 | | -3x+14=5x-10 | | 18x+4x-4=2(2x+7) | | 5w+14-w^2=0 | | 70.72+38.29-x-47=32 | | X^+-12x+36=0 | | 7(9h)=376 | | -5(-x-1)+4x=50 | | F(x)=2x^2/5+1 | | 2/d=9/6 |